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A short gas-discharge layer sandwiched with a semiconductor layer between planar electrodes shows a
variety of spatiotemporal patterns. We focus on the spontaneous temporal oscillations that occur while a dc
voltage is applied and while the system stays spatially homogeneous; the results for these oscillations apply
equally to a planar discharge in series with any resistor with capacitance. We define the minimal model,
identify its independent dimensionless parameters, and then present the results of the full time-dependent
numerical solutions of the model as well as of a linear stability analysis of the stationary state. Full numerical
solutions and the results of the stability analysis agree very well. The stability analysis is then used for
calculating bifurcation diagrams. We find semiquantitative agreement with experiment for the diagram of
bifurcations from stationary to oscillating solutions as well as for amplitude and frequency of the developing
limit cycle oscillations.
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[. INTRODUCTION ticular, from the occurrence of a period-doubling cascade as
well as from analytical model reductiongl2]. Similar

Gas discharges on the transition from the Townsend to thperiod-doubling cascades are observed experimentaly in
glow regime exhibit a wealth of spatiotemporal structures[22-27.
Besides striations—i.e., longitudinal waves in a long- In the present paper, we continue the analysis of the full
discharge columml-5—short discharges with wide lateral gas-discharge model, coupled to a high-Ohmic layer and
aspect ratio can also exhibit rich spatiotemporal structures idriven by a stationary voltage. The focus is now on quanti-
the transversal direction as reported by a number of authorsitive comparison with experiment, on a stability analysis,
[6-9]. This is even the case when the externally applied voltand on the derivation of a bifurcation diagram. The specific
age is stationary and the gas is pure, as long as the systemdgperiment to be analyzed was performed in nitrogen at
sandwiched between planar electrodes and at least o mbar within a gap of 0.5 or 1 mm wide while the semi-
Ohmic layer. An interesting sequence of experiments hasonductor was a layer of 1.5 mm photosensitively doped
been performed in Miinstdrl0,11] where the bifurcations GaAs. To the whole structure, voltages in the range of
between different spatiotemporal states in parameter spa&0—-800 V were applied. As in our previous papers
were investigated very systematically. [12,28,29, we restrict the analysis to the direction normal to

As in our previous papdl2], we focus in the present one the layers, hence assuming homogeneity in the transversal
on the purely temporal oscillations that occur in a spatiallydirections. The experimental system actually shows a transi-
homogeneous mode. This focus has two reasons: first, unddren from a homogeneous stationary to a homogeneous o0s-
standing the temporal structures is a first systematic step taillating state, and the theory presented here reproduces es-
wards understanding the full spatiotemporal structures; seential features of these experiments. At the same time, the
ond, there are numerous observations of temporainvestigation serves as a gauge point for a later analysis of
oscillations in comparable parameter regini@8—21. For  spatiotemporal patterns.
the oscillations, the setup need not contain an Ohmic layer as In detail, we define the model as a set of partial differen-
in [10,11]; a resistor with capacitance in the circuit will have tial equations and perform a dimensional analysis in Sec. Il.
the same effect on the gas discharge. In Sec. lll, first the physical parameters and the numerical

In the previous papdrl2], we concentrated on the ques- details of solving the partial differential equatio®DE’s) in
tion whether a simple two-component reaction-diffusiontime are given. Then qualitative and quantitative results of
model for current and voltage in the gas-discharge layenumerical solutions and experiments are discussed. In par-
would be sufficient to describe the oscillations. Such a modsdiicular, the hysteresis between stationary and oscillating so-
is suggested through similarities with patterns formed in dutions is demonstrated numerically. The amplitude and fre-
number of physical, chemical, or biological systems like thequency of the limit cycle oscillations as a function of applied
Belousov-Zhabotinski reaction, Rayleigh-Benard convectionyoltage and conductivity of the semiconductor are compared
patterns in bacterial colonies, in Dictyostelium, or in nervalwith experimental results, and the physical mechanism of the
tissue, etc. However, the actual results of a realistic gas dissscillation is discussed. In Sec. 1V, it is explained how the
charge model are in conflict with a simple two-componentstability analysis about a stationary solution of the complete
reaction diffusion approximation that neglects the height angystem is performed. In Sec. V, the results of the stability
subsequent memory of the system. This can be seen, in paanalysis are presented. First a convincing agreement between
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numerical solutions of the full PDE’s and the stability analy- J.(0,H)=0 = n,(0,t) = 0. (7)
sis results is found. Then the stability analysis is used to o ) o
calculate bifurcation diagrams for the transition from station-At the cathode which is located a&d, impacting ions can
ary to oscillating states that are then compared with experilP€rate electrons by secondary emission with rate

ment. The paper concludes with Sec. VI. 13(d,0)] = 113400, 1)] = pane(d,t) = yuani(dit).  (8)

Il. MODEL Note that consistenly witfl2,2§, but in contrast with most
other literature, the anode is on the left-hand side =.

The experiment consists of two layers, a gas discharg&hijs has the advantage that the electric field is positive, and
and a semiconductor, sandwiched between two planar elegign mistakes when evaluatirigjor |E| cannot occur.
trodes to which a dc voltage is applied. In this section, the Substantial densities of charged particles change the elec-
equations are defined and a dimensional analysis is petric field according to Eq(3), and the electric field deter-
formed to identify the independent parameter combinationgnines drift and ionization rates of the particles according to
of the problem. This also serves to identify physical pro-gqs.(1), (2), (4), and(5). Therefore the process is nonlinear

cesses and time scales. as soon as space charges become relevant. It causes the well-
known transition from the linear Townsend discharge to the
A. Gas-discharge layer nonlinear glow discharge.
In the gas discharge, two ionization mechanisms cooper-
ate to maintain conductivity: the so-calledprocess of im- B. Semiconductor layer and complete circuit
pact ionization in the bulk of the discharge and thprocess The semiconductor layer of thicknest is assumed to

of secondary emission at the cathode. The classical *fluidaye a homogeneous and field-independent conductixity
approximation consists of continuity equations for the elecynq dielectricity constant:

tron densityn, and positive ion density,, coupled to the
Poisson equation for the electric field J(t) = o Eyt), = es600,E. 9

N+ 3:Je = Ssource (1) As there are no space charges in the bulk of the semiconduc-
tor, the electric field is homogeneous, and voltage and field
are related througtJy(t)=E((t)ds. The equation of charge

an,+ 393, =8 2 . . i . )
e 7 P Ssource @ conservation,q+d,Js=0 in one dimension leads again to the
. homogeneity of the total current densitt):
o,E= ;)(m -ny). (3) €s€otiEL(t) +I(t) = J(1), (10)

The spatial coordinate is normal to the layers, and in the Which is the same as in the gas dischatge Hence in
present paper, it is assumed that there are no variations in theacroscopic parameters, the semiconductor solves
transversal directions. The gas is assumed to be nonattach- _ _

. . N S CaUg(t) +J4(1) =J(t), Ugt) = t), 11
ing; i.e., no negative ions are formed. Also photoionization, AUs(D) + 340 = (0 <) = RJ(1) (19
Ohmic heating, nonlocal interactions, and diffusion are ne-
glected in this simplest approximation. The particle current C.= @, Ry=—. (12)
densities), andJ, are approximated by a drift motion that is ds Os

linear in the field: whereC; is the capacitance per area.

Jo= —NgueE,  Ji=nuE. (4) According to Eqs(11), perturbations ofJ4(t) or J4(t) de-

. ) ) cay on the Maxwell time scale
The source term on the right-hand side of Ed$.and(2) is

?pproxmated by impact ionization in the classical Townsend T.=CR.= @' (13)
orm o
S

Ssource= INetteE| age EIE. (5)  This time scale is independent of the thickness of the semi-
conductor layer although it represents the time that the
charge needs to cross it. The time scale of the experimentally
observed oscillations is of the order ©f and therefore also

€odE(r 1) + eJ(r,t) + el (r,) = J(t), 4J()=0. (6) gppromirgately proportional to bi; as will be discussed in

ec. .
This identity can be used to substitukgor J, by J(t). In the Actually, for the present investigation of one-dimensional
present analysis, we will keag(r,t) andE(r,t) as indepen- oscillations, the specific structure of a planar semiconductor
dent fields and expresg andJ, by these fields and the total layer is not required, but any serial component of the electric
currentJ(t). circuit with capacitanc€, and resistanc®; will support the
The model is completed by boundary conditions on thesame equatioill).

electrode. At the anode which is located a0, electrons are The total stationary voltage; over the complete system
absorbed and ions are absent: is

The one-dimensional approximation of Eqg&l)—(3)
makes the total electric curredtt) homogeneous:
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d
U= U(t) + Ug), U(t):f E(r,tdr, &U,=0.
0

(14)
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¢(0,7)=0. (26)

Hence the dynamics of the complete system is described
by Egs.(18)—(21), (23), (25), and(26). The system is char-
acterized completely by the independent dimensionless pa-

According to Egs(11) and(14), the dynamics of the voltage rametersu, L, and y for the gas discharge layer, and R

U(t) on the gas discharge obeys the equation
TU = U, - U(t) - RJ(t). (15)

C. Dimensional analysis and system definition

The dimensional analysis is performed as previously in

for the semiconductor layer and the total applied dc voltage
ut.

III. NUMERICAL SOLUTIONS OF THE DYNAMICS

In this section, this dynamical model is solved numeri-

[12,28-30Q. We introduce the dimensionless coordinates andally and the results are compared with experiments. We dis-

cuss physical parameters under in Sec. Ill A and numerical
details in Sec. Il B. In Sec. lll C, qualitative features of
experimental and numerical system are compared like the
bistability between stationary and oscillating state. In Sec.
11l D, a quantitative comparison between theory and experi-
ment is performed, and the dependence of amplitude and
frequency of the oscillation as a function @f and 1/Rg is
determined numerically. Finally, in Sec. Il E, we discuss the

measuring quantities in terms of the intrinsic parameters ofnechanism of the oscillations and identify the surface charge

fields
r t ne(r,t
2=l r=l ozn= ",
Xo to No
E(r,1) ) . J
E(z,n= , U=——, = , 16
@n="¢ Exe ety 1O
the system:
1 1 E
Xo=—, to= ) no:_ano 9, (17)
Qg apmeEo e

After eliminating the ion dynamics by the total currgft),
the equation of motion of the gas discharge becomes

3,0= e+ jeal€), Je=0E, (18)
IEL=)(1) = (L+pje— uEdL, (19
and the boundary conditior{g) and(8) read
9,£(0,7) = j(7) = j&(0,7), (20)
1
2L =i(7) - %je@,ﬂ. (21

effects that are inherent in our model.

A. Physical parameters

In the experimenf10], nitrogen at a pressure of 40 mbar
was used in gaps with widths of 0.5 or 1 mm. Refergrida
contains mainly data for the 0.5-mm gap, while Rigf1]
also contains more data for 1 mm. The gas discharge was
coupled to a semiconductor layer of GaAs with a width of
ds=1.5 mm and a dielectricity constart=13.1. Through
photosensitive doping, the conductivity of the semiconductor
layer could be increased by about an order of magnitude; the
dark conductivity wasr,=3.2x 1078 (2 cm)™L. For the dis-
charge gap of 0.5 mm width, voltages in the range of
500-600 V were used; for the gap of 1 mm width, the ap-
plied voltages were in the range of 580-740 V.

Of course, the predictive power of the theory depends on

The intrinsic dimensionless parameters of the gas discharg@® model approximations as well as on the chosen param-
are the mobility ratiou of electrons and ions and the length €ters. our simple classical model will not give fully quanti-
ratio L of system size and inverse cross section of impacfat've agreement. On the other hand, its simple structure and

ionization:

petE L= (22)

The discharge is coupled to the semiconductor and the dc

voltage sourcé/, through Eqs(11) as
0 U(T) = Uy = U(T) = R4j (7), (23
with the dimensionless parameters

_Ts R
Tty Egtolleng)

The voltageu(r):f(L,E(z, 7)dzis related to the electric fielél
and potentiakp in differential form as

&z 1) =-dPz7), UT)=¢0,7)-(L,7), (25

where gauge freedom allows one to choose

(24)

Ts

few parameters give a chance of physical understanding and
control.

For the gas discharge, we used the ion mobility
=23.33 cm/(Vs) and electron mobility e
=6666.6 cm/(V s). For ag=Ap=[27.78 um]™* and E,=Bp
=10.26 kV/cm, the value froni31] was used. The gap
widths ofd=0.5 and 1 mm then correspond to dimensionless
gap widthsL=18 and 36. Fory, we used the value 0.08
determined from experimental Paschen curvedlif]. It
should be noted that our classical model predicts that the
Paschen curve§.e., the breakdown voltagel of the gas
discharge as a function of pressure times gap wmthfor
different system sizes should be indistinguishable. In prac-
tice, they do not precisely fall on top of each other.

It is interesting to note how sensitive the theoretical re-
sults are to small changes of the secondary emission coeffi-
cient v, in particular for the short gap with=18. This is
illustrated in Fig. 1. The upper three solid lines show the
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9.4 T T T T analyze the system with gap width 1 m(in=36).
We recall that the intrinsic scales

9.3
Xo=~27.78um, t,=~40.6X 10?s,

92
Ny~ 2.04x 10'%cm®, Ey=~10.26 kV/cm  (27)
91F

enter the dimensional analysi{46). Therefore the dimen-

> ol sionless parameters for a system with gap width dof
=1 mm and applied voltages in the range from 500 to 740 V
N are in our simulations:
Tl L-18 ©=0.0035, L=36, y=0.08,
88F T
7s=0.243R,, 3X 10P°P<R =3 x 10,
875 0.2 0.4 0.6 0.8 1

i x 107 17.5< U, < 26. (29

FIG. 1. Current-voltage characteristics f@r0.08 (solid lineg Here, the dimensionless capacitance of the semiconductor
and y=0.1 (dashed ling for the dimensionless gap widths as  layer isC;=0.243, and its dimensionless characteristic time
indicated in the figure. scale ist;=C<R The valueR =3x 10° for the semiconduc-
tor resistance corresponds to the dark conductivityogf

- 8 —

gap widths ofL=17, 17.5, and 18. As discussed in moref_‘?l‘2>< 1hU /(Q'cm),dand 723_3.%105 _c;)rzreslp((;r;;jsﬂto the
detail in[28,29, the characteristics can be supercriti¢al ully p otogctlvate conductivity o5=3.2X (Qcm).
=17, positive differential conductivity for all values of the The dimensionless voltage range of 1%4,<26 corre-
currentj), mixed Il (L=17.5, Townsend breakdown voltage SPonds to the dimensional range of 508<\J;<740 V.
lower than the local voltage minimum f¢r= 0), or mixed |
(L=18, Townsend breakdown voltage higher than the local B. Numerical solution strategy
voltage minimum forj # 0). The dashed line shows the char-
acteristics forL=18 andy=0.1. then overall is consider-
ably lower and the characteristics are fully subcritical; i.e.
the voltage has only one minimum as a function of curjent . o : .
and this occurs for a valug# 0. This subcritical behavior ?r:sec;grt.lrﬁatlon, the dynamical equatio®) and (19) have
corresponds to the classical textbook case where the charac-
teristics bend down from the Townsend breakdown voltage oML gm (Ug)nril_ (0™
towards a voltage minimum in the glow discharge ' - = ' '
regime—as we have discussed[28,29 in detail, this re- A7 Az
quires a sufficiently large system size. For0.08, the char-
acteristics become subcritical for system size> L gml_gm
=€?In[(1+7)/y]=19.2 while the transition to supercritical AT
behavior is determined numericall28] to the value ofL
=17.2. (29)

Data on the coefficieny of secondary electron emission wherei parametrizes the spatial amiithe temporal grid.
are relatively scarce, so it is quite comm(@2] to use it as For knowno™ and £™ at time stepm, the boundary con-

an adjustable parameter as we do. The tabulated data f@jition on the left i.e., at the anode given by ER0) deter-
ag=Ap and E;=Bp from [31] together with the Paschen mines

curve ford=0.5 mm from[11] would suggesty=0.03, but

that would mean that the characteristics would be supercriti- EMI= M+ Ar(j™ - (E)D), (30
cal up toL=24.9; then, it would develop some regime with ) il .

negative differential conductivity, and it would become sub-then, the other field&i™" are calculated successively from

shape of the current voltage characteristics #610.08 and

Equations(18)—(26) were solved numerically with an im-
plicit temporal discretization, which makes the calculation
'numerically stable for arbitrary time and space steps. After

+(Eaa(&)™,

M+l omed
& :

S A+ (ER),

=jm—-,em
J Iu‘l AZ

critical only for L> L(y=0.03=26.1. the left to right(i=2,3, ... N) by the equation

We conclude that the gap with width 0.5 mgorrespond- Ar
ing to L=18) is so sensitive to the not very well known 5{“(1+M—5{T_“11—(1 +M)Am{“) +Aq™
parametery that an analysis of the experimental data would el Az (31)
be rather uncertain. Furthermore, the approximation of ' MAT '
purely local interactions becomes worse in shorter gaps. Fi- 1 +E5i

nally, the electric fields in short discharges are higher and
vary more; therefore, the assumption thadoes not depend For aim”, the boundary condition on the right i.e., at the
on E becomes more restrictive. For this reason, we chose toathode(21) determines
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_4 _4
6 x 10 ' . . 5 x 10 .
4 -
- ot
2
3 5
O0 0.5 1 15 2 _
t x 10° -
20 T ol
151
o
1 5
10
% 0.5 1 15 2 0
t x10°
FIG. 2. j(7) andU(7) for the parameters from Eq$28), Rg FIG. 3. Phase space plot of the data from Fig. 2. After some
=4X 10°, andi4=19.5. transient time, a stable limit cycle is reached. Also drawn are the

current-voltage characteristits=1(j) of the gas discharge and the
< gml_ em / 1+ load line U=U;-Rj. Their intersection denotes the stationary
m+1l_ | :m N T CN Y om+l
={j"= ) ( EN ) (32

solution.
IN AT

The same qualitative behavior can be observed in our nu-
merical solutions. First, the upper panel in Fig. 2 shows the
currentj(7) as a function of time for the system with the
parameters from Eqs28) and R¢=4x10° and ¢/,=19.5

The remaining,rimFl can now be calculated successively from
the right to left(i=N-1,N-2,...,] as

AT
o'+ A*Z(US){EI [which corresponds too,=2.4X107/(Qcm) and U,
ai””l: . (33 =555 V]. After some transient, the current relaxes to peri-
At m+l _ Ml omL odic unharmonic oscillations. The lower panel in Fig. 2
1+ Ei ATgi C((gl ) .
z shows the voltag&/(7) over the gas discharge; the voltage on

the semiconductor is correspondingly—U(7). In dimen-

m . . .
The total currenf™ in these equations is determined by sional units, the peak current of the oscillations is about

1 “ 9 mA/cn? and the frequency is about 120 kHz.
M= ————— | U - U"+ 7| Z[(ED? - (ED?] The same numerical data for currgnand voltage/{ are
Rs+ 7l 2 shown as a phase space plot in Fig. 3. The figure shows more
N-1
+(L+pAzY (50){“) : (34) 8
i=1
This identity can be derived from Ed23) where 9,/ is T

identified with f(L,dz[LE through Eq.(25), and then ford.£,
the identity(19) is used.

The results presented in Figs. 2-9 are derived on a gric g}
with Az=36/600 andAr=180/600 which gives sufficient
numerical accuracy. — 4}

C. Qualitative features of experimental and numerical
oscillations: Hysteresis amd limit cycles 2F

The experiment§10] show approximately periodic oscil-
lations. They are quite anharmonic with long phases of low
current interrupted by a short current pulse. Depending on g . . . . , T, . .
applied voltagé/, and resistance of the semiconductor layer ' 1.5 12 125 13 135 14 145 15 155
R either the homogeneous stationary or the homogeneous
oscillating state is dynamically stable. In between, there is a FIG. 4. System with exactly the same parameters as in Figs. 2
regime of bistability where it depends hysteretically on theand 3 but for different initial conditions. The system now spirals
previous state whether the system is stationary or oscillatingnwards towards the stationary point.

1 3
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8 x 10 x 10 x 10
e 9
ol 7 E 8 -
_R
— 4} < 6 o 7 -
. .
6 ~«‘”
ol 5 =
. _ _ L 5|
0 0.5 1.5 2 25 3 20 22 24 26 28 20 22 24 26 28

t x 10° Y, Y,

20 ) ' ' " " 6 107 x10°°
* K
15} 2
E »
5
D10} <58} * .
5 :a 4 ¥ i
» ‘,‘“
. _ . . . . 5.6 - s o
0 0.5 1 1.5 2 25 3 d
t X 10° 1 2 3 1 2 3
1/R x107° 1R, x107°

FIG. 5. j(7) and U(7) for the parameters from Eq$28), Rg
=4X 10°, andi4,=24. The stationary state now is linearly unstable
and develops into a limit cycle.

FIG. 7. AmplitudeA and frequency of the current oscillations
as a function of applied total voltage, (for fixed resistanceRg
=4x 10°) and as a function of conductivity R (for fixed voltage
precisely the approach to a limit cycle. Figure 3 contains twd#=21-
additional lines: namely, the current voltage characteristics of
the gas dischargd=(j) and the load liné/=U/,—Rj. Their ~ analysis described in Secs. IV and V of this paper. We find
intersection marks the stationary solution of the system. Ithati/,=24 (U,=684 V) with all other parameters unchanged
the present case, it is located in the low-current regime closean be used as an example of a system where the stationary
to the Townsend limit, while the peak current explores thesolution is dynamically unstable, and the system runs away
regime of subnormal glow. from this initial state and eventually reaches a limit cycle
The system of Figs. 2 and 3 is actually in the bistableoscillation. This behavior is shown in Fig. 5 Hs) andi/(7),
regime. For different initial conditions that are a sufficiently while Fig. 6 shows the corresponding phase space plot.
small perturbation of the stationary state, the same system
relaxes to the stationary point. This is shown as a phase D. Quantitative comparison: Amplitude and frequency of
space plot in Fig. 4. oscillations
If the applied voltage/, becomes large enough, the sta-
tionary state becomes unstable for any initial condition. The
search for appropriate parameters was guided by the stabilil‘gle

The qualitative agreement of numerical solutions and ex-
riment now encourages a more quantitative comparison.

x 107 16519
8 T T T T T T
1.55
7} —
15}
6t 1.45}
L 1.4
5 1.
— 4}
13.65
3.
13.6
-]
2.
13.55}
1 5
135 . .
| 335 2 25 3
0 L t 8
4 6 8 10 12 14 16 18 x10

FIG. 8. Comparison of(7) andi(7) from the stability analysis
FIG. 6. Phase space plot of the data from Fig. 5 with current-(solid lineg with the result from the simulatiofdashed linesfor
voltage characteristics and load line. the parameter values of Figs. 2—4.
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x 107 we observe an almost constant value in the range of 5.5
' ' X 1074-6.0x 107* in the lower left pannel.
On the other hand, for the variation of the frequerfcy

3.5

S with conductivity, experimentfl1] both for 605 V and for
616 V observe an about linear increase from 115 kHz or
257 \ 125 kHz to 220 kHz(4.6X 106<f<8.8x 10 in our di-
. ) mensionless unijsin the range of 0.6X 10°%<1/R.<2.9
0 5 10 15 X 1075, Our numerical results in this range of R/ show the
t x 10° same linear increase, from 2x8L0°° to 6.5x 10°%. We be-
13.8 T T lieve that this agreement is quite convincing, in particular
136l since no parameter fitting was tried.
o5 Summarizing, we find convincing agreement with experi-
134Ff ment forA as a function ot4; as well as forf as a function
) of 1/R.. For the last, the available experimental results al-
13.2}

low us to identify an almost quantitative agreement. The sen-

sitivity of the experimental results oA as a function of

1/R¢ does not allow quantitative comparison, and our results

for f as a function ot/, deviate in their functional form from
FIG. 9. Comparison of(7) andi4(7) from the stability analysis the available statements about experimental results.

(solid lineg with the result from the simulatiofdashed linesfor

the parameter values of Figs. 5 and 6 where the stationary solution

is unstable.

t x10°

E. Mechanism of the oscillations, reaction-diffusion models,
and surface charge

Reference[11] contains diagrams on how frequency and 1he voltage profile#/(7) in Figs. 2 and 5 show that there
maximal current amplitude depend on the semiconductoff® tWO processes involved in the oscillations.

conductivity for a gas gap of 1 mm. It also contains the 1he first process occurs on the slow time scalef the
remark that the frequency and amplitude for fixed conductiv-S€miconductor. It de_sc/:nbes the exponential decay of the volt-
ity depend in about the same way on the applied voltage a@9€4:—U(7)~R4j =€ "™ over the semiconductor layer ac-
in the 0.5-mm gap of Ref10]. cording to Eq.(23), as long as the contribution & does

The same diagrams can also be derived from the numerfl0t vary substantially. The decay timgis the Maxwell time
cally obtained limit cycle oscillations; they are presented indué to the resistance and capacitance of the semiconductor
Fig. 7. The figure shows the current amplitudleand fre- layer. 7 accounts for the slow rise of the voltag#r) over
quencyf as a function of semiconductor conductanc&®]/ the gas-discharge layer to a value above the current-voltage
for fixed voltagel, or as a function ot/ for fixed 1/R.. characteristics of the gas discharge.

We now compare the results. The upper left panel shows The other process is the electric breakdown of the gas-
that the maximal current amplitudeas a function of applied discharge layer for sufficiently large(r) which leads to a
voltagel/, is increasing with decreasing slope. This agreesurrent pulse and a rapid subsequent decay/(af.
with the statements written ifl1]. The upper right panel It has been suggested by a number of authors
shows that the frequendlyis an almost linearly increasing [7,15,17,33-3Bthat the current could be approximated by a
function of applied voltag@/; this is actually in contradic- similarly simple equation of the type,j=g(l/,j), whereg
tion with the statement ifi11] that the function would de- vanishes on the current-voltage characteristics. This would
crease. bring the equations into a reaction-diffusion form. However,

The lower two panels allow a more quantitative compari-as we already have discussed 112], such an approximation
son since corresponding experimental diagrams can be fouraf the underlying equation€l8)—(21), (25), and (26) is not
in [11]. The experiments explore the range of 0.6possible, since it would not admit the period-doubling events
X 1077/ (Q cm) < 0,=<2.8X 1077/(£2 cm) which corresponds observed in[12], and it would not allow the phase space
to 0.62x10°<1/R.,<2.9x10° The experimental dia- plotsin Figs. 3, 4, and 6 to intersect the characteristics with
grams forU,=605 V and 616 V if11] show that the ampli- @ nonvanishing derivative, as they definitely do.
tudeA is very sensitive to this change while the frequeficy ~ The physical reason for this behavior is the finite response
is rather robust. The numerical results are derivedlpr time of the gas-discharge layer, its “inertia,” which does not
=21 which corresponds t0;=600 V. allow an instantaneous reaction of the current. If ions are

In detail, the experimental curve for the current amplitudecreated by bulk impact ionization close to the anode, they
for 605 V shows first an increase from 0.2 to 0.8 mA with awill cross the whole gap until they reach the cathode and
subsequent sudden drop to essentially 0 from which the cupossibly liberate more electrons by secondary emission. The
rent suddenly jumps to values from 1.0 to 1.5 mA. Fortime that the ions need to cross the gap is therefore an im-
616 V, in contrast, an almost continuous increase frorportant scale of internal memory of the gas discharge. It can
0.2 to 2.7 mA is observed for the same resistance range. N&€ approximated asq,~L/(u) = L?/[uld(7)] wherel€] is
too surprisingly, our numerical results reproduce neither osome average field within the gas gap. For the gap of
these widely differing results at quite similar voltage. Rather=36 (d=1 mm), the ion crossing time is estimated as 2.6
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X 10* for U(7)=14 or as 1.5 10* for U(7) =24 (which cor- dyo =~ Eo, (45)
responds to 0.6 or Ls in dimensional unijs This time is of
the same order or larger than the duration of a current pulse, Us=U - Ry, (46)

both in our numerical solutions and in the experimental re-
sults of Fig. 5 in[10]. (For the experiments on the 0.5-mm with boundary conditions
gap of Fig. 4 in[10], the situation seems to be different.
Finally, it has been suggested [89] that the surface ie0(0) = jor mjeo(l-):jw (47)
charge on the interface between gas and semiconductor could Y
play an important role, in a similar way as in ac discharges.
This is certainly true, but the surface chamgfe) is not an $0(0)=0, ¢o(L)=—U,. (48)

independent variable. Rather it is fully determined by the . . )

solution discussed above through Equations (43)—<(45) with _Eqs. (47)_ and (48) <_jef|ne the
current-voltage characteristiédg=/(j) of a stationary dis-

U —U(T) charge in the regime between Townsend and glow discharge
q(7) = € L —&L, . (35) [28,29,3]. Equation(46) is the load line due to the external

circuit. The intersection of load line and characteristics de-

The assumption that this surface charge is the only relevanines a generically discrete number of stationary solutions of

charge in the whole system does not lead to a satisfactorghe system as a whole.

description either, but the space charges in the gas-discharge

layer have to be taken into account, too. B. Linear perturbations
For linear perturbations about this stationary state, we use
IV. STABILITY ANALYSIS: METHOD the ansatz
_The direct nl_JmerlcaI solution of the dynamical problem_|s 14Z7) = (@ + (D€, (49)
a time-consuming procedure that does not allow exploration
of a wide set of parameter values. We therefore have devel- _ -
oped a linear stability analysis of the stationary state. It de- E(z,7)=Eol2) + E1(2)€", (50)
termines whether the stationary state is dynamically unstable
and how small perturbations of such a state grow. In the B(2,7) = do(2) + 1(2)€"7, (51)
present section, we present the method and in the following
one the results. (D =jo+ i€\ (52
) _ ) The lower index O denotes the unperturbed stationary solu-
A. Problem setting and stationary solutions tions while the lower index 1 denotes the linear perturbations
The dynamical equations from Sec. Il C are summarizedibout this stationary solution. The factorization of the pertur-
as bation into az-dependent function times the exponengl
o ) anticipates the eigenvalue problem of the solution.
0,0=djjetjea(E), je=0E, (36) In terms of the original variables, the explicit expansion in
first-order perturbation theory is a lengthy expression, but in
IL=J(1) = (L+ p)je— nEIL, (37)  terms of the variables
_ 01E0t 00€1 [ (2)€7
DD = Uy~ U(D) ~ R (7), (38) he Q00T 0% _Ja@eT oo (59
oo jeo(2)
0=9,0(z,7) +E(z,7), (399  the equations have a more compact form
with the boundary conditions A a' (& A
’ azh:—h—( al +—3)g, (54
3,£(0,0)=j(71) = 0,7, (40) €o o &
28l =i(n- 2L (41) 79=- 1+ h- gLt (55)
7= y o mo ok u
(L, 7)=-U(7), ¢(0,7=0. (42) 971 =0, (56)
The stationary solutions form the starting point of the per- 1
turbation analysis. They solve the equations Oppy = — 5_9' (57)
0
dre0="jeo(&p), 43 ) .
deo =~ Jeoa(Eo) “3 with boundary conditions
1€y =jo= (L + w)jeo, (44) $1(0)=0, (58)
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. . o
= 0) +joh(0), 59 h 0 h
I 50(0)9() joh(0) (59) \ °
&L || 2] =0, 91 =o.
\ _1 I “Rs || i1
j1= L) +joh(L), 60 1
1 SO(L)g( ) +joh(L) (60) 0 b1/ L +A\7s/ \ b1/ L
(66)
Rsj1=(L+N79 (L), (61)  Now each one of these two conditions determines the ratio
C,/C, of the general solutio64):
Here the equatiord,j;=0 for the conservation of the total
current is written explicitly in order to bring the equations ; A .
into the homogeneous form Caf Joha(L) + 5O(L)gl(|') L)
, , A . B
L3 _ (a_ " %) 0 0 + Cz[]ohz(L) + mgz(L) - ll,z(L)] =0, (67
d 1+ A 1 h
g - Mjeo - Z 0 g Ci[- Rg14(L) + (1 + N7y 4(L)]
| . |= M 12 M - .
10 0 o o ol +Cf~Rej1 L) + (1 +X79 1 AL)]=0, (68)
2 1 b wherej; 4(L)=1=j, ,(L), since these components have this
0 A 0 o0 value atz=0 according to Eq(65), j; 1(0)=1=j; »0), and
0

since the equation of motion fgy is d,j;=0. A nontrivial
(62) solution of both Eqs(67) and (68) requires the determinant

The boundary condition$58) and (59) at z=0 can be (L) Y O-1 ighL) N U-1
. . . + —_— —_— + — —
written as orthogonality relations A= JoNy &o(L) 01 Joh2 EO(L)gZ
io . 0 A “Rs+(L+N71) 1 1(L)  —Rs+ (L+N79) ¢y o(L)
A (69)
g | _ 01l 9| _ : . L . _
£0(0) ) =0, . =0 (63) to vanish. This condition leads to a quadratic equation for the
1 J1 0\ I eigenvaluex.
0 ¢’l 0 1 (/1)1 0

. ) C. Rescaling with # and numerical calculation
The general solution(z) of Eq. (62) is therefore a superpo-

sition of two independent solutions;(z2) and v,(2) of Eq.
(62) that both obey Eq(63) in z=0:

The eigenvalue. can now be calculated numerically.
First, it should be noted that the equation of mot{6R)
has matrix elements of very different size, sincés a very
small parameter. However, this apparent stiffness of the

h(2) problem can be removed by introducing the new parameters
- 9(2) - -
v(2=1 . =C101(2) + Cou,(2). (64) o o
j1(2) o 2 =2 izl =R,
$1(2) gk
As initial conditions, one can choose, e.g., To= T, S= A. (70)
y73
1/j 0 The introduction of rescaled current density and time scale
0 &o(0) and resistivity has a direct physical motivation. Previous
5,(0) = 0 5,(0) = N (65) analyses of the stationary solutiof8,29,3] as well as the
! 1 2 dynamical solutions of Sec. Ill arfd 2] show that velocities
0 1 should actually be measured on the time scale of the ions and
0 not of the electrons. So the time scale should be measured in
units of t,=1/(agu.Ep)=to/ w rather than in units ofty
The components of the two solutions are denoted;®  =1/(apuEy). The rescaling70) directly follows from this
=(hi(2),9(2).i1i(2), $1,(2). consideration.
The boundary conditioné60) and (61) at z=L also have Now the eigenvalues can be calculated numerically as
the form of orthogonality relations follows: First an initial estimates, is chosen. Then the two
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initial conditions(65) atz=0 are integrated numerically with Rs
Eq. (62) up toz=L. Generically, the determinadt, Eq.(69), r= 11+
will then be nonvanishing. The request that the determinant s
vanish fixes a new value farthat is used for the next step of and

the iteration within an underrelaxation method that garantu-

ees the stability of the convergence. This procedure is re- Cosa:_%, sina = Im A7 _ (76)
peated until an accuracy of |[1+N7 [1+)7
- The final result is
ST S| g6 (71)
Skr1 j(7) = jo+cueReN cogdIm N7+ ), (77)
is reached. con
The eigenvalusis in general a complex parameter whose U(T) =Up = cre™ " codIm N7+ a + ap), (78)

real part describes the growth or decay of the OSC|IIat|onWhere amplitude and absolute phase, reflect the arbitrary

farg]pllj'gqu(le Vg:rl:ce:esltz ';nagg:])étg?ritndtﬁzcgbﬁztgf :fsr(fr:!?it(;?]nfactor C, in Eg. (72) and are adjustable while all other pa-
q Y- b 9 rameters are fixed.

(62), also the vectot(z) has complex entries. Therefore 16

real functions Ré,(z), Im hy(2), etc., have to be integrated

over z. It is convenient to also integrate the two real func-

tions jg and &, that enter the matrix62) together with the As a check of accuracy, these solutions are now first com-

perturbations. The iteration program is writtenAORTRAN  pared with numerical solutions of the full PDE problem.

90 with complex variables. For the integration of equations, For the set of parameters from Figs. 2—4, the stationary

a fourth-order Runge-Kutta method is used. The number o$olution is(jo,o)=(1.49x 10°°,13.583, and the eigenvalue

grid points used was 500, since 1000 or 2000 grid points\ has the complex valua=-2.913x 105+i4.822x 1075,

give essentially the same result. As 7s=340/n andR¢=1400/u, the ratio of current and volt-
age amplitudea=295/u and the phase shii#z=98.69° are
determined through Ed76).

V. STABILITY ANALYSIS: RESULTS The comparison of these predictions from the stability

. - . ._analysis with numerical solutions of the full PDE problem is
In the present section, the validity of the stability analysisghown in Fig. 8. Here the free parameters for the total am-

results is confirmed by comparison with numerical solutionsp”tudec and the absolute phasg were chosen such as to fit
of the full dynamical problem. The stability analysis is theny,o ppe data well.

used to determine the phase diagram for the onset of oscCil- This visual agreement can be tested in more detail. In
lating solutions. These phase diagrams are then compar%mcumn we used the PDE data in the time interval 5
with experimental results, again with semiquantitative agrees, 105 < < 6.5x 10° to determine the phase shiftbetween
ment. U, and j;. It is @=(100%0.4°, convincingly close to the
predicted value otv=98.69°.

Increasing the total applied voltagg, the real part of the
eigenvaluen grows until it becomes positive. This means
The stability analysis determines not only the complexthat the stationary solution becomes linearly unstable and

B. Comparison with solutions of the full PDE’s

A. Structure of the results

eigenvalue\, but also the whole linear correction perturbations will grow. An example of such behavior occurs
for U,=24 with all other parameters as before. The stationary

0(2)=Cy| 04(2) - R5+(1+)‘73)u1v2(|‘)52(2) , (72)  solution is then(jo,Up)=(2.64X 10°5,13.441, the eigen-

Rs+ (1 +N1Uy 4(L) value is\=2.493x 107%+i7.375x 10°°, the ratio of current

and voltage amplitude is=192/u, and the phase shift is
=99.83°.

Figure 9 shows again the comparison between these re-
sults and the numerical solutions of the full PDE’s. Again,

up to the arbitrary complex consta@y.
This v(z) determines the evolution of current and voltage
in linear approximation about the stationary solutipgnif,):

ji(D=jo+j€"+c.c., (73 the agreement is very convincing.
Of course, the predictive power of linear stability analysis
UT) = Uy + U, + C.C. (74) is limited to small perturbations with, <j, and U; <U,.

When the amplitude of the oscillation from Fig. 6 increases
where c.c. denotes the complex conjugate. The ratio betwednrther, nonlinear couplings set in and the system finally
U, andj is fixed through the boundary conditig6l) to the  reaches a limit cycle as shown in Fig. 7.
value
j C. Calculation of phase diagrams

U =- m =re'’jy, (79) The stability analysis now allows one to derive the bifur-
S cation line where a homogeneous stationary state loses its
where stability. Figure 10 shows this bifurcation line for the param-
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FIG. 12. Bifurcation diagram foiy=0.08,L=36, andL=72.
FIG. 10. Bifurcation diagram for the parameters from E2B) ) . .
(whereL=36) and three different values of. The lines separate 0.08 or smajlgr. In de.ta.‘ll.’ eXpe_”mem_S ShOW_ t,hat the raising
regions with Re\<0 where the stationary state is linearly stable Phase transition line initially raises with positive slope then
from regions with Re\>0 where the homogeneous stationary statechanges gradually to being almost parallel to #yexis and
loses its stability.

then continues with negative slope up to the maximal experi-
mentally reachedrs.
eters(28) as a function of applied voltagé, and conductiv-

For the low conductivity of the semiconductor layer, the
ity 1/R, for three different values of. Besides the value experiment shows another bifurcation line almost parallel to
s : i 7
v=0.08 used everywhere else in the paper, also results fcg € Uy axis at va_lues_ofas around 0.5¢10°'/(€2 cm). In
¥=0.04 and 0.16 are shown to illustrate the sensitivity of imensionless units tl(;lls corresponds to a plateau at values of
theoretical predictions to this parameter. For \ReO, the 1|/ Rsbaround Q.F}:hl(T .IAnI atp%ro?]ch to d‘.Q’UCh a pll_|ateau car;h
stationary state is linearly stable, while for Re-0, the sys- aiso be seen In the calculated phase diagram. HOwever, the
tem is always in the oscillating state. theoretical curve crosses over continuously to this plateau,
Comparison with the experimental phase diagram in Figwhile the experimental curve seems to show the intersection
11 for the gas gap with a corresponding widthdsf1 mm of two bifurcation lines with a quite distinct slope. We have
[11,40 shows qualitative and quantitative correspondenceg,10 explanatlon for this dewa_tlon. .
but also deviations. Experiments in the 1 mm gap tgr It is remarkable that the bifurcation theory also covers the
<585V (14,=20.5 do not exhibit oscillations. The same almost horizontal bifurcation line for small ®. Another
t_ . . - - .
holds theoretically for a secondary emission coefficient Ofexplanat!on for this experimentally observed feature of the
phase diagram would have been a breakdown of the con-
R tinuum approximation: the recovery phase of the oscillation
x10 . would have carried such a low current that the discreteness
% o experimental data of the electrons would have to be taken into account.
E3 - 4=0.08
3r %
%

Finally, it was observed experimentallt0,11] that in-
creasing the system side while keeping other conditions
o 4=0.16

unchanged, the frequency decreases and oscillations set in at
higher voltages. This agrees with our calculated phase dia-

gram in Fig. 12. Indeed, fd#,<22.5, the homogeneous sta-
tionary state is stable fdr=72.

VI. CONCLUSION

We have analyzed the simplest model for a one-
dimensional short gas discharge coupled to an external cir-
5 20 25 ] 30 35 20 cuit with resistor, capacitance, and stationary voltage. This

analysis is directly applicable to experiments performed in
[10,11.
FIG. 11. Blowup of the bifurcation diagram in Fig. 10 for two

region of parameters and have the same limits.

We have presented fully numerical solutions as well as a
different values of y and comparison with experimental data linear stability analysis of the stationary state of the system
[11,40. Theoretical lines and experimental lines are in the samavhich are in very good mutual agreement. The numerical

solutions reproduce experimental observations of bistability
066402-11
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and oscillations in a semiquantitative manner, though th@pens up the way to investigate now the spatial and spa-
model is minimal and no attempt of parameter fitting hastiotemporal patterns in the next step.

been made. The stability analysis allows us to derive bifur-

ca}tlon dlagrams ina swnple mgnner;'they_ also agree overall ACKNOWLEDGMENT

with experimentally obtained bifurcation diagrams.
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