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A short gas-discharge layer sandwiched with a semiconductor layer between planar electrodes shows a
variety of spatiotemporal patterns. We focus on the spontaneous temporal oscillations that occur while a dc
voltage is applied and while the system stays spatially homogeneous; the results for these oscillations apply
equally to a planar discharge in series with any resistor with capacitance. We define the minimal model,
identify its independent dimensionless parameters, and then present the results of the full time-dependent
numerical solutions of the model as well as of a linear stability analysis of the stationary state. Full numerical
solutions and the results of the stability analysis agree very well. The stability analysis is then used for
calculating bifurcation diagrams. We find semiquantitative agreement with experiment for the diagram of
bifurcations from stationary to oscillating solutions as well as for amplitude and frequency of the developing
limit cycle oscillations.
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I. INTRODUCTION

Gas discharges on the transition from the Townsend to the
glow regime exhibit a wealth of spatiotemporal structures.
Besides striations—i.e., longitudinal waves in a long-
discharge columnf1–5g—short discharges with wide lateral
aspect ratio can also exhibit rich spatiotemporal structures in
the transversal direction as reported by a number of authors
f6–9g. This is even the case when the externally applied volt-
age is stationary and the gas is pure, as long as the system is
sandwiched between planar electrodes and at least one
Ohmic layer. An interesting sequence of experiments has
been performed in Münsterf10,11g where the bifurcations
between different spatiotemporal states in parameter space
were investigated very systematically.

As in our previous paperf12g, we focus in the present one
on the purely temporal oscillations that occur in a spatially
homogeneous mode. This focus has two reasons: first, under-
standing the temporal structures is a first systematic step to-
wards understanding the full spatiotemporal structures; sec-
ond, there are numerous observations of temporal
oscillations in comparable parameter regimesf13–21g. For
the oscillations, the setup need not contain an Ohmic layer as
in f10,11g; a resistor with capacitance in the circuit will have
the same effect on the gas discharge.

In the previous paperf12g, we concentrated on the ques-
tion whether a simple two-component reaction-diffusion
model for current and voltage in the gas-discharge layer
would be sufficient to describe the oscillations. Such a model
is suggested through similarities with patterns formed in a
number of physical, chemical, or biological systems like the
Belousov-Zhabotinski reaction, Rayleigh-Benard convection,
patterns in bacterial colonies, in Dictyostelium, or in nerval
tissue, etc. However, the actual results of a realistic gas dis-
charge model are in conflict with a simple two-component
reaction diffusion approximation that neglects the height and
subsequent memory of the system. This can be seen, in par-

ticular, from the occurrence of a period-doubling cascade as
well as from analytical model reductionsf12g. Similar
period-doubling cascades are observed experimentaly in
f22–27g.

In the present paper, we continue the analysis of the full
gas-discharge model, coupled to a high-Ohmic layer and
driven by a stationary voltage. The focus is now on quanti-
tative comparison with experiment, on a stability analysis,
and on the derivation of a bifurcation diagram. The specific
experiment to be analyzed was performed in nitrogen at
40 mbar within a gap of 0.5 or 1 mm wide while the semi-
conductor was a layer of 1.5 mm photosensitively doped
GaAs. To the whole structure, voltages in the range of
500–800 V were applied. As in our previous papers
f12,28,29g, we restrict the analysis to the direction normal to
the layers, hence assuming homogeneity in the transversal
directions. The experimental system actually shows a transi-
tion from a homogeneous stationary to a homogeneous os-
cillating state, and the theory presented here reproduces es-
sential features of these experiments. At the same time, the
investigation serves as a gauge point for a later analysis of
spatiotemporal patterns.

In detail, we define the model as a set of partial differen-
tial equations and perform a dimensional analysis in Sec. II.
In Sec. III, first the physical parameters and the numerical
details of solving the partial differential equationssPDE’sd in
time are given. Then qualitative and quantitative results of
numerical solutions and experiments are discussed. In par-
ticular, the hysteresis between stationary and oscillating so-
lutions is demonstrated numerically. The amplitude and fre-
quency of the limit cycle oscillations as a function of applied
voltage and conductivity of the semiconductor are compared
with experimental results, and the physical mechanism of the
oscillation is discussed. In Sec. IV, it is explained how the
stability analysis about a stationary solution of the complete
system is performed. In Sec. V, the results of the stability
analysis are presented. First a convincing agreement between
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numerical solutions of the full PDE’s and the stability analy-
sis results is found. Then the stability analysis is used to
calculate bifurcation diagrams for the transition from station-
ary to oscillating states that are then compared with experi-
ment. The paper concludes with Sec. VI.

II. MODEL

The experiment consists of two layers, a gas discharge
and a semiconductor, sandwiched between two planar elec-
trodes to which a dc voltage is applied. In this section, the
equations are defined and a dimensional analysis is per-
formed to identify the independent parameter combinations
of the problem. This also serves to identify physical pro-
cesses and time scales.

A. Gas-discharge layer

In the gas discharge, two ionization mechanisms cooper-
ate to maintain conductivity: the so-calleda process of im-
pact ionization in the bulk of the discharge and theg process
of secondary emission at the cathode. The classical “fluid”
approximation consists of continuity equations for the elec-
tron densityne and positive ion densityn+, coupled to the
Poisson equation for the electric fieldE:

]tne + ]rJe = Ssource, s1d

]tn+ + ]rJ+ = Ssource, s2d

]rE =
e

«0
sn+ − ned. s3d

The spatial coordinater is normal to the layers, and in the
present paper, it is assumed that there are no variations in the
transversal directions. The gas is assumed to be nonattach-
ing; i.e., no negative ions are formed. Also photoionization,
Ohmic heating, nonlocal interactions, and diffusion are ne-
glected in this simplest approximation. The particle current
densitiesJe andJ+ are approximated by a drift motion that is
linear in the field:

Je = − nemeE, J+ = n+m+E. s4d

The source term on the right-hand side of Eqs.s1d ands2d is
approximated by impact ionization in the classical Townsend
form

Ssource= unemeEua0e
−E0/uEu. s5d

The one-dimensional approximation of Eqs.s1d–s3d
makes the total electric currentJstd homogeneous:

e0]tEsr,td + eJesr,td + eJ+sr,td = Jstd, ]rJstd = 0. s6d

This identity can be used to substituteJe or J+ by Jstd. In the
present analysis, we will keepnesr ,td andEsr ,td as indepen-
dent fields and expressn+ andJ+ by these fields and the total
currentJstd.

The model is completed by boundary conditions on the
electrode. At the anode which is located atr =0, electrons are
absorbed and ions are absent:

J+s0,td = 0 ⇔ n+s0,td = 0. s7d

At the cathode which is located atr =d, impacting ions can
liberate electrons by secondary emission with rateg:

uJesd,tdu = guJ+sd,tdu ⇔ menesd,td = gm+n+sd,td. s8d

Note that consistenly withf12,28g, but in contrast with most
other literature, the anode is on the left-hand side atr =0.
This has the advantage that the electric field is positive, and
sign mistakes when evaluatingE or uEu cannot occur.

Substantial densities of charged particles change the elec-
tric field according to Eq.s3d, and the electric field deter-
mines drift and ionization rates of the particles according to
Eqs.s1d, s2d, s4d, ands5d. Therefore the process is nonlinear
as soon as space charges become relevant. It causes the well-
known transition from the linear Townsend discharge to the
nonlinear glow discharge.

B. Semiconductor layer and complete circuit

The semiconductor layer of thicknessds is assumed to
have a homogeneous and field-independent conductivityss
and dielectricity constantes:

Jsstd = ssEsstd, q = ese0]rE. s9d

As there are no space charges in the bulk of the semiconduc-
tor, the electric field is homogeneous, and voltage and field
are related throughUsstd=Esstdds. The equation of charge
conservation]tq+]rJs=0 in one dimension leads again to the
homogeneity of the total current densityJstd:

ese0]tEsstd + Jsstd = Jstd, s10d

which is the same as in the gas discharges6d. Hence in
macroscopic parameters, the semiconductor solves

Cs]tUsstd + Jsstd = Jstd, Usstd = RsJsstd, s11d

Cs =
ese0

ds
, Rs =

ds

ss
. s12d

whereCs is the capacitance per area.
According to Eqs.s11d, perturbations ofUsstd or Jsstd de-

cay on the Maxwell time scale

Ts = CsRs =
ese0

ss
. s13d

This time scale is independent of the thickness of the semi-
conductor layer although it represents the time that the
charge needs to cross it. The time scale of the experimentally
observed oscillations is of the order ofTs and therefore also
approximately proportional to 1/ss as will be discussed in
Sec. III D.

Actually, for the present investigation of one-dimensional
oscillations, the specific structure of a planar semiconductor
layer is not required, but any serial component of the electric
circuit with capacitanceCs and resistanceRs will support the
same equations11d.

The total stationary voltageUt over the complete system
is
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Ut = Ustd + Usstd, Ustd =E
0

d

Esr,tddr, ]tUt = 0.

s14d

According to Eqs.s11d ands14d, the dynamics of the voltage
Ustd on the gas discharge obeys the equation

Ts]tU = Ut − Ustd − RsJstd. s15d

C. Dimensional analysis and system definition

The dimensional analysis is performed as previously in
f12,28–30g. We introduce the dimensionless coordinates and
fields

z=
r

X0
, t =

t

t0
, ssz,td =

nesr,td
n0

,

Esz,td =
Esr,td

E0
, U =

U

E0X0
, j =

J

en0X0/t0
, s16d

measuring quantities in terms of the intrinsic parameters of
the system:

X0 =
1

a0
, t0 =

1

a0meE0
, n0 =

e0a0E0

e
. s17d

After eliminating the ion dynamics by the total currentjstd,
the equation of motion of the gas discharge becomes

]ts = ]zje + jeasEd, je = sE, s18d

]tE = jstd − s1 + md je − mE]zE, s19d

and the boundary conditionss7d and s8d read

]tEs0,td = jstd − jes0,td, s20d

]tEsL,td = jstd −
1 + g

g
jesL,td. s21d

The intrinsic dimensionless parameters of the gas discharge
are the mobility ratiom of electrons and ions and the length
ratio L of system size and inverse cross section of impact
ionization:

m =
m+

me
, L =

d

X0
. s22d

The discharge is coupled to the semiconductor and the dc
voltage sourceUt through Eqs.s11d as

ts]tUstd = Ut − Ustd − Rsjstd, s23d

with the dimensionless parameters

ts =
Ts

t0
, Rs =

Rs

E0t0/sen0d
. s24d

The voltageUstd=e0
LEsz,tddz is related to the electric fieldE

and potentialf in differential form as

Esz,td = − ]zfsz,td, Ustd = fs0,td − fsL,td, s25d

where gauge freedom allows one to choose

fs0,td = 0. s26d

Hence the dynamics of the complete system is described
by Eqs.s18d–s21d, s23d, s25d, and s26d. The system is char-
acterized completely by the independent dimensionless pa-
rametersm, L, andg for the gas discharge layer,ts andRs
for the semiconductor layer and the total applied dc voltage
Ut.

III. NUMERICAL SOLUTIONS OF THE DYNAMICS

In this section, this dynamical model is solved numeri-
cally and the results are compared with experiments. We dis-
cuss physical parameters under in Sec. III A and numerical
details in Sec. III B. In Sec. III C, qualitative features of
experimental and numerical system are compared like the
bistability between stationary and oscillating state. In Sec.
III D, a quantitative comparison between theory and experi-
ment is performed, and the dependence of amplitude and
frequency of the oscillation as a function ofUt and 1/Rs is
determined numerically. Finally, in Sec. III E, we discuss the
mechanism of the oscillations and identify the surface charge
effects that are inherent in our model.

A. Physical parameters

In the experimentf10g, nitrogen at a pressure of 40 mbar
was used in gaps with widths of 0.5 or 1 mm. Referencef10g
contains mainly data for the 0.5-mm gap, while Ref.f11g
also contains more data for 1 mm. The gas discharge was
coupled to a semiconductor layer of GaAs with a width of
ds=1.5 mm and a dielectricity constantes=13.1. Through
photosensitive doping, the conductivity of the semiconductor
layer could be increased by about an order of magnitude; the
dark conductivity wasss=3.2310−8 sV cmd−1. For the dis-
charge gap of 0.5 mm width, voltages in the range of
500–600 V were used; for the gap of 1 mm width, the ap-
plied voltages were in the range of 580–740 V.

Of course, the predictive power of the theory depends on
the model approximations as well as on the chosen param-
eters. Our simple classical model will not give fully quanti-
tative agreement. On the other hand, its simple structure and
few parameters give a chance of physical understanding and
control.

For the gas discharge, we used the ion mobilitym+
=23.33 cm2/ sV sd and electron mobility me

=6666.6 cm2/ sV sd. For a0=Ap=f27.78mmg−1 and E0=Bp
=10.26 kV/cm, the value fromf31g was used. The gap
widths ofd=0.5 and 1 mm then correspond to dimensionless
gap widthsL=18 and 36. Forg, we used the value 0.08
determined from experimental Paschen curves inf11g. It
should be noted that our classical model predicts that the
Paschen curvessi.e., the breakdown voltageU of the gas
discharge as a function of pressure times gap widthpdd for
different system sizes should be indistinguishable. In prac-
tice, they do not precisely fall on top of each other.

It is interesting to note how sensitive the theoretical re-
sults are to small changes of the secondary emission coeffi-
cient g, in particular for the short gap withL=18. This is
illustrated in Fig. 1. The upper three solid lines show the
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shape of the current voltage characteristics forg=0.08 and
gap widths ofL=17, 17.5, and 18. As discussed in more
detail in f28,29g, the characteristics can be supercriticalsL
=17, positive differential conductivity for all values of the
current jd, mixed II sL=17.5, Townsend breakdown voltage
lower than the local voltage minimum forj Þ0d, or mixed I
sL=18, Townsend breakdown voltage higher than the local
voltage minimum forj Þ0d. The dashed line shows the char-
acteristics forL=18 andg=0.1. U then overall is consider-
ably lower and the characteristics are fully subcritical; i.e.,
the voltage has only one minimum as a function of currentj
and this occurs for a valuej Þ0. This subcritical behavior
corresponds to the classical textbook case where the charac-
teristics bend down from the Townsend breakdown voltage
towards a voltage minimum in the glow discharge
regime—as we have discussed inf28,29g in detail, this re-
quires a sufficiently large system size. Forg=0.08, the char-
acteristics become subcritical for system sizeL.Lcrit
=e2 lnfs1+gd /gg=19.2 while the transition to supercritical
behavior is determined numericallyf28g to the value ofL
=17.2.

Data on the coefficientg of secondary electron emission
are relatively scarce, so it is quite commonf32g to use it as
an adjustable parameter as we do. The tabulated data for
a0=Ap and E0=Bp from f31g together with the Paschen
curve for d=0.5 mm fromf11g would suggestg=0.03, but
that would mean that the characteristics would be supercriti-
cal up toL=24.9; then, it would develop some regime with
negative differential conductivity, and it would become sub-
critical only for L.Lcritsg=0.03d=26.1.

We conclude that the gap with width 0.5 mmscorrespond-
ing to L=18d is so sensitive to the not very well known
parameterg that an analysis of the experimental data would
be rather uncertain. Furthermore, the approximation of
purely local interactions becomes worse in shorter gaps. Fi-
nally, the electric fields in short discharges are higher and
vary more; therefore, the assumption thatg does not depend
on E becomes more restrictive. For this reason, we chose to

analyze the system with gap width 1 mmsL=36d.
We recall that the intrinsic scales

X0 < 27.78mm, t0 < 40.63 10−12 s,

n0 < 2.043 1012/cm3, E0 < 10.26 kV/cm s27d

enter the dimensional analysiss16d. Therefore the dimen-
sionless parameters for a system with gap width ofd
=1 mm and applied voltages in the range from 500 to 740 V
are in our simulations:

m = 0.0035, L = 36, g = 0.08,

ts = 0.243Rs, 3 3 105 ø Rs ø 3 3 106,

17.5ø Ut ø 26. s28d

Here, the dimensionless capacitance of the semiconductor
layer is Cs=0.243, and its dimensionless characteristic time
scale ists=CsRs. The valueRs=33106 for the semiconduc-
tor resistance corresponds to the dark conductivity ofss
=3.2310−8/ sV cmd, and Rs=33105 corresponds to the
fully photoactivated conductivityss=3.2310−7/ sV cmd.
The dimensionless voltage range of 17.5øUtø26 corre-
sponds to the dimensional range of 500 VøUtø740 V.

B. Numerical solution strategy

Equationss18d–s26d were solved numerically with an im-
plicit temporal discretization, which makes the calculation
numerically stable for arbitrary time and space steps. After
discretization, the dynamical equationss18d and s19d have
the form

si
m+1 − si

m

Dt
=

ssEdi+1
m+1 − ssEdi

m+1

Dz
+ „EsasEd…i

m+1,

Ei
m+1 − Ei

m

Dt
= jm − mEi

m
Ei

m+1 − Ei−1
m+1

Dz
− s1 + mdsEsdi

m,

s29d

wherei parametrizes the spatial andm the temporal grid.
For knownsm andEm at time stepm, the boundary con-

dition on the left i.e., at the anode given by Eq.s20d deter-
mines

E1
m+1 = E1

m + Dt„ jm − sEsd1
m
…, s30d

then, the other fieldsEi
m+1 are calculated successively from

the left to rightsi =2,3, . . . ,Nd by the equation

Ei
m+1 =

Ei
mS1 +

mDt

Dz
Ei−1

m+1 − s1 + mdDtsi
mD + Dt jm

1 +
mDt

Dz
Ei

m

. s31d

For si
m+1, the boundary condition on the right i.e., at the

cathodes21d determines

FIG. 1. Current-voltage characteristics forg=0.08 ssolid linesd
and g=0.1 sdashed lined for the dimensionless gap widthsL as
indicated in the figure.
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sN
m+1 = S jm −

EN
m+1 − EN

m

Dt
DYS1 + g

g
EN

m+1D . s32d

The remainingsi
m+1 can now be calculated successively from

the right to leftsi =N−1,N−2, . . . ,1d as

si
m+1 =

si
m +

Dt

Dz
ssEdi+1

m+1

1 +
Dt

Dz
Ei

m+1 − DtEi
m+1asEi

m+1d
. s33d

The total currentjm in these equations is determined by

jm =
1

Rs + tsL
FUt − Um + tsSm

2
fsEN

md2 − sE1
md2g

+ s1 + mdDzo
i=1

N−1

sEsdi
mDG . s34d

This identity can be derived from Eq.s23d where ]tU is
identified with e0

Ldz]tE through Eq.s25d, and then for]tE,
the identitys19d is used.

The results presented in Figs. 2–9 are derived on a grid
with Dz=36/600 andDt=180/600 which gives sufficient
numerical accuracy.

C. Qualitative features of experimental and numerical
oscillations: Hysteresis amd limit cycles

The experimentsf10g show approximately periodic oscil-
lations. They are quite anharmonic with long phases of low
current interrupted by a short current pulse. Depending on
applied voltageUt and resistance of the semiconductor layer
Rs, either the homogeneous stationary or the homogeneous
oscillating state is dynamically stable. In between, there is a
regime of bistability where it depends hysteretically on the
previous state whether the system is stationary or oscillating.

The same qualitative behavior can be observed in our nu-
merical solutions. First, the upper panel in Fig. 2 shows the
current jstd as a function of time for the system with the
parameters from Eqs.s28d and Rs=43105 and Ut=19.5
fwhich corresponds toss=2.4310−7/ sV cmd and Ut

=555 Vg. After some transient, the current relaxes to peri-
odic unharmonic oscillations. The lower panel in Fig. 2
shows the voltageUstd over the gas discharge; the voltage on
the semiconductor is correspondinglyUt−Ustd. In dimen-
sional units, the peak current of the oscillations is about
9 mA/cm2 and the frequency is about 120 kHz.

The same numerical data for currentj and voltageU are
shown as a phase space plot in Fig. 3. The figure shows more

FIG. 2. jstd and Ustd for the parameters from Eqs.s28d, Rs

=43105, andUt=19.5.
FIG. 3. Phase space plot of the data from Fig. 2. After some

transient time, a stable limit cycle is reached. Also drawn are the
current-voltage characteristicsU=Us jd of the gas discharge and the
load line U=Ut−Rsj . Their intersection denotes the stationary
solution.

FIG. 4. System with exactly the same parameters as in Figs. 2
and 3 but for different initial conditions. The system now spirals
inwards towards the stationary point.
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precisely the approach to a limit cycle. Figure 3 contains two
additional lines: namely, the current voltage characteristics of
the gas dischargeU=Us jd and the load lineU=Ut−Rsj . Their
intersection marks the stationary solution of the system. In
the present case, it is located in the low-current regime close
to the Townsend limit, while the peak current explores the
regime of subnormal glow.

The system of Figs. 2 and 3 is actually in the bistable
regime. For different initial conditions that are a sufficiently
small perturbation of the stationary state, the same system
relaxes to the stationary point. This is shown as a phase
space plot in Fig. 4.

If the applied voltageUt becomes large enough, the sta-
tionary state becomes unstable for any initial condition. The
search for appropriate parameters was guided by the stability

analysis described in Secs. IV and V of this paper. We find
thatUt=24 sUt=684 Vd with all other parameters unchanged
can be used as an example of a system where the stationary
solution is dynamically unstable, and the system runs away
from this initial state and eventually reaches a limit cycle
oscillation. This behavior is shown in Fig. 5 asjstd andUstd,
while Fig. 6 shows the corresponding phase space plot.

D. Quantitative comparison: Amplitude and frequency of
oscillations

The qualitative agreement of numerical solutions and ex-
periment now encourages a more quantitative comparison.

FIG. 5. jstd and Ustd for the parameters from Eqs.s28d, Rs

=43105, andUt=24. The stationary state now is linearly unstable
and develops into a limit cycle.

FIG. 6. Phase space plot of the data from Fig. 5 with current-
voltage characteristics and load line.

FIG. 7. AmplitudeA and frequencyf of the current oscillations
as a function of applied total voltageUt sfor fixed resistanceRs

=43105d and as a function of conductivity 1/Rs sfor fixed voltage
Ut=21d.

FIG. 8. Comparison ofjstd andUstd from the stability analysis
ssolid linesd with the result from the simulationsdashed linesd for
the parameter values of Figs. 2–4.
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Referencef11g contains diagrams on how frequency and
maximal current amplitude depend on the semiconductor
conductivity for a gas gap of 1 mm. It also contains the
remark that the frequency and amplitude for fixed conductiv-
ity depend in about the same way on the applied voltage as
in the 0.5-mm gap of Ref.f10g.

The same diagrams can also be derived from the numeri-
cally obtained limit cycle oscillations; they are presented in
Fig. 7. The figure shows the current amplitudeA and fre-
quencyf as a function of semiconductor conductance 1/Rs
for fixed voltageUt or as a function ofUt for fixed 1/Rs.

We now compare the results. The upper left panel shows
that the maximal current amplitudeA as a function of applied
voltageUt is increasing with decreasing slope. This agrees
with the statements written inf11g. The upper right panel
shows that the frequencyf is an almost linearly increasing
function of applied voltageUt; this is actually in contradic-
tion with the statement inf11g that the function would de-
crease.

The lower two panels allow a more quantitative compari-
son since corresponding experimental diagrams can be found
in f11g. The experiments explore the range of 0.6
310−7/ sV cmdøssø2.8310−7/ sV cmd which corresponds
to 0.62310−6ø1/Rsø2.9310−6. The experimental dia-
grams forUt=605 V and 616 V inf11g show that the ampli-
tudeA is very sensitive to this change while the frequencyf
is rather robust. The numerical results are derived forUt
=21 which corresponds toUt=600 V.

In detail, the experimental curve for the current amplitude
for 605 V shows first an increase from 0.2 to 0.8 mA with a
subsequent sudden drop to essentially 0 from which the cur-
rent suddenly jumps to values from 1.0 to 1.5 mA. For
616 V, in contrast, an almost continuous increase from
0.2 to 2.7 mA is observed for the same resistance range. Not
too surprisingly, our numerical results reproduce neither of
these widely differing results at quite similar voltage. Rather,

we observe an almost constant value in the range of 5.5
310−4–6.0310−4 in the lower left pannel.

On the other hand, for the variation of the frequencyf
with conductivity, experimentsf11g both for 605 V and for
616 V observe an about linear increase from 115 kHz or
125 kHz to 220 kHzs4.6310−6ø f ø8.8310−6 in our di-
mensionless unitsd in the range of 0.62310−6ø1/Rsø2.9
310−6. Our numerical results in this range of 1/Rs show the
same linear increase, from 1.5310−6 to 6.5310−6. We be-
lieve that this agreement is quite convincing, in particular
since no parameter fitting was tried.

Summarizing, we find convincing agreement with experi-
ment forA as a function ofUt as well as forf as a function
of 1/Rs. For the last, the available experimental results al-
low us to identify an almost quantitative agreement. The sen-
sitivity of the experimental results onA as a function of
1/Rs does not allow quantitative comparison, and our results
for f as a function ofUt deviate in their functional form from
the available statements about experimental results.

E. Mechanism of the oscillations, reaction-diffusion models,
and surface charge

The voltage profilesUstd in Figs. 2 and 5 show that there
are two processes involved in the oscillations.

The first process occurs on the slow time scalets of the
semiconductor. It describes the exponential decay of the volt-
ageUt−Ustd−Rsj ~e−t/ts over the semiconductor layer ac-
cording to Eq.s23d, as long as the contribution ofRsj does
not vary substantially. The decay timets is the Maxwell time
due to the resistance and capacitance of the semiconductor
layer. ts accounts for the slow rise of the voltageUstd over
the gas-discharge layer to a value above the current-voltage
characteristics of the gas discharge.

The other process is the electric breakdown of the gas-
discharge layer for sufficiently largeUstd which leads to a
current pulse and a rapid subsequent decay ofUstd.

It has been suggested by a number of authors
f7,15,17,33–38g that the current could be approximated by a
similarly simple equation of the type]t j =gsU , jd, whereg
vanishes on the current-voltage characteristics. This would
bring the equations into a reaction-diffusion form. However,
as we already have discussed inf12g, such an approximation
of the underlying equationss18d–s21d, s25d, and s26d is not
possible, since it would not admit the period-doubling events
observed inf12g, and it would not allow the phase space
plots in Figs. 3, 4, and 6 to intersect the characteristics with
a nonvanishing derivative, as they definitely do.

The physical reason for this behavior is the finite response
time of the gas-discharge layer, its “inertia,” which does not
allow an instantaneous reaction of the current. If ions are
created by bulk impact ionization close to the anode, they
will cross the whole gap until they reach the cathode and
possibly liberate more electrons by secondary emission. The
time that the ions need to cross the gap is therefore an im-
portant scale of internal memory of the gas discharge. It can
be approximated astion<L / smEd<L2/ fmUstdg where uEu is
some average field within the gas gap. For the gap ofL
=36 sd=1 mmd, the ion crossing time is estimated as 2.6

FIG. 9. Comparison ofjstd andUstd from the stability analysis
ssolid linesd with the result from the simulationsdashed linesd for
the parameter values of Figs. 5 and 6 where the stationary solution
is unstable.
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3104 for Ustd=14 or as 1.53104 for Ustd=24 swhich cor-
responds to 0.6 or 1ms in dimensional unitsd. This time is of
the same order or larger than the duration of a current pulse,
both in our numerical solutions and in the experimental re-
sults of Fig. 5 inf10g. sFor the experiments on the 0.5-mm
gap of Fig. 4 inf10g, the situation seems to be different.d

Finally, it has been suggested inf39g that the surface
charge on the interface between gas and semiconductor could
play an important role, in a similar way as in ac discharges.
This is certainly true, but the surface chargeqstd is not an
independent variable. Rather it is fully determined by the
solution discussed above through

qstd = es

Ut − Ustd
L

− EsL,td. s35d

The assumption that this surface charge is the only relevant
charge in the whole system does not lead to a satisfactory
description either, but the space charges in the gas-discharge
layer have to be taken into account, too.

IV. STABILITY ANALYSIS: METHOD

The direct numerical solution of the dynamical problem is
a time-consuming procedure that does not allow exploration
of a wide set of parameter values. We therefore have devel-
oped a linear stability analysis of the stationary state. It de-
termines whether the stationary state is dynamically unstable
and how small perturbations of such a state grow. In the
present section, we present the method and in the following
one the results.

A. Problem setting and stationary solutions

The dynamical equations from Sec. II C are summarized
as

]ts = ]zje + jeasEd, je = sE, s36d

]tE = jstd − s1 + md je − mE]zE, s37d

ts]tUstd = Ut − Ustd − Rsjstd, s38d

0 = ]zfsz,td + Esz,td, s39d

with the boundary conditions

]tEs0,td = jstd − jes0,td, s40d

]tEsL,td = jstd −
1 + g

g
jesL,td, s41d

fsL,td = − Ustd, fs0,td = 0. s42d

The stationary solutions form the starting point of the per-
turbation analysis. They solve the equations

]zje0 = − je0asE0d, s43d

mE0]zE0 = j0 − s1 + md je0, s44d

]zf0 = − E0, s45d

U0 = Ut − Rsj0, s46d

with boundary conditions

je0s0d = j0,
1 + g

g
je0sLd = j0, s47d

f0s0d = 0, f0sLd = − U0. s48d

Equations s43d–s45d with Eqs. s47d and s48d define the
current-voltage characteristicsU=Us jd of a stationary dis-
charge in the regime between Townsend and glow discharge
f28,29,31g. Equations46d is the load line due to the external
circuit. The intersection of load line and characteristics de-
fines a generically discrete number of stationary solutions of
the system as a whole.

B. Linear perturbations

For linear perturbations about this stationary state, we use
the ansatz

jesz,td = je0szd + je1szdelt, s49d

Esz,td = E0szd + E1szdelt, s50d

fsz,td = f0szd + f1szdelt, s51d

jstd = j0 + j1e
lt. s52d

The lower index 0 denotes the unperturbed stationary solu-
tions while the lower index 1 denotes the linear perturbations
about this stationary solution. The factorization of the pertur-
bation into az-dependent function times the exponentialest

anticipates the eigenvalue problem of the solution.
In terms of the original variables, the explicit expansion in

first-order perturbation theory is a lengthy expression, but in
terms of the variables

h =
s1E0 + s0E1

s0E0
=

je1szdest

je0szd
, g = E0E1, s53d

the equations have a more compact form

]zh =
l

E0
h − Sa8sE0d

E0
+

l

E0
3Dg, s54d

]zg = − s1 + md
je0

m
h −

l

mE0
g +

j1
m

, s55d

]zj1 = 0, s56d

]zf1 = −
1

E0
g, s57d

with boundary conditions

f1s0d = 0, s58d
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j1 =
l

E0s0d
gs0d + j0hs0d, s59d

j1 =
l

E0sLd
gsLd + j0hsLd, s60d

Rsj1 = s1 + ltsdf1sLd. s61d

Here the equation]zj1=0 for the conservation of the total
current is written explicitly in order to bring the equations
into the homogeneous form

]z1
h

g

j1
f1

2 =1
l

E0
− Sa8

E0
+

l

E0
3D 0 0

−
1 + m

m
je0 −

l

mE0

1

m
0

0 0 0 0

0 −
1

E0
0 0

21 h

g

j1
f1

2 .

s62d

The boundary conditionss58d and s59d at z=0 can be
written as orthogonality relations

1
j0
l

E0s0d

− 1

0
21 h

g

j1
f1

2
0

= 0, 1
0

0

0

1
21

h

g

j1
f1

2
0

= 0. s63d

The general solutionvWszd of Eq. s62d is therefore a superpo-
sition of two independent solutionsvW1szd and vW2szd of Eq.
s62d that both obey Eq.s63d in z=0:

vWszd =1
hszd
gszd
j1szd
f1szd

2 = C1vW1szd + C2vW2szd. s64d

As initial conditions, one can choose, e.g.,

vW1s0d =1
1/j0
0

1

0
2, vW2s0d =1

0

E0s0d
l

1

0
2 . s65d

The components of the two solutions are denoted asvW iszd
=(hiszd ,giszd , j1,iszd ,f1,iszd).

The boundary conditionss60d and s61d at z=L also have
the form of orthogonality relations

1
j0
l

E0sLd

− 1

0
21 h

g

j1
f1

2
L

= 0, 1
0

0

− Rs

1 + lts

21
h

g

j1
f1

2
L

= 0.

s66d

Now each one of these two conditions determines the ratio
C1/C2 of the general solutions64d:

C1F j0h1sLd +
l

E0sLd
g1sLd − j1,1sLdG

+ C2F j0h2sLd +
l

E0sLd
g2sLd − j1,2sLdG = 0, s67d

C1f− Rsj1,1sLd + s1 + ltsdf1,1sLdg

+ C2f− Rsj1,2sLd + s1 + ltsdf1,2sLdg = 0, s68d

where j1,1sLd=1= j1,2sLd, since these components have this
value atz=0 according to Eq.s65d, j1,1s0d=1= j1,2s0d, and
since the equation of motion forj1 is ]zj1=0. A nontrivial
solution of both Eqs.s67d and s68d requires the determinant

D = * j0h1sLd +
l

E0sLd
g1sLd − 1 j0h2sLd +

l

E0sLd
g2sLd − 1

− Rs + s1 + ltsdf1,1sLd − Rs + s1 + ltsdf1,2sLd *
s69d

to vanish. This condition leads to a quadratic equation for the
eigenvaluel.

C. Rescaling with m and numerical calculation

The eigenvaluel can now be calculated numerically.
First, it should be noted that the equation of motions62d

has matrix elements of very different size, sincem is a very
small parameter. However, this apparent stiffness of the
problem can be removed by introducing the new parameters

ie =
je
m

, i =
j

m
, rs = Rsm,

t̄s = tsm, s=
l

m
. s70d

The introduction of rescaled current density and time scale
and resistivity has a direct physical motivation. Previous
analyses of the stationary solutionsf28,29,31g as well as the
dynamical solutions of Sec. III andf12g show that velocities
should actually be measured on the time scale of the ions and
not of the electrons. So the time scale should be measured in
units of t+=1/sa0m+E0d= t0/m rather than in units oft0
=1/sa0meE0d. The rescalings70d directly follows from this
consideration.

Now the eigenvalues can be calculated numerically as
follows: First an initial estimates0 is chosen. Then the two
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initial conditionss65d at z=0 are integrated numerically with
Eq. s62d up toz=L. Generically, the determinantD, Eq. s69d,
will then be nonvanishing. The request that the determinant
vanish fixes a new value fors that is used for the next step of
the iteration within an underrelaxation method that garantu-
ees the stability of the convergence. This procedure is re-
peated until an accuracy of

Usk+1 − sk

sk+1
U , 10−6 s71d

is reached.
The eigenvalues is in general a complex parameter whose

real part describes the growth or decay of the oscillation
amplitude while its imaginary part describes the oscillation
frequency. Sinces is a parameter in the equation of motion
s62d, also the vectorvWszd has complex entries. Therefore 16
real functions Reh1szd, Im h1szd, etc., have to be integrated
over z. It is convenient to also integrate the two real func-
tions je0 andE0 that enter the matrixs62d together with the
perturbations. The iteration program is written inFORTRAN

90 with complex variables. For the integration of equations,
a fourth-order Runge-Kutta method is used. The number of
grid points used was 500, since 1000 or 2000 grid points
give essentially the same result.

V. STABILITY ANALYSIS: RESULTS

In the present section, the validity of the stability analysis
results is confirmed by comparison with numerical solutions
of the full dynamical problem. The stability analysis is then
used to determine the phase diagram for the onset of oscil-
lating solutions. These phase diagrams are then compared
with experimental results, again with semiquantitative agree-
ment.

A. Structure of the results

The stability analysis determines not only the complex
eigenvaluel, but also the whole linear correction

vWszd = C1FvW1szd −
Rs + s1 + ltsdU1,2sLd
Rs + s1 + ltsdU1,1sLd

vW2szdG , s72d

up to the arbitrary complex constantC1.
This vWszd determines the evolution of current and voltage

in linear approximation about the stationary solutions j0,U0d:

jstd = j0 + j1e
lt + c.c., s73d

Ustd = U0 + U1e
lt + c.c., s74d

where c.c. denotes the complex conjugate. The ratio between
U1 and j1 is fixed through the boundary conditions61d to the
value

U1 = −
j1

s1 + ltsd/Rs
= reia j1, s75d

where

r =
Rs

u1 + ltsu

and

cosa = −
1 + Relts

u1 + ltsu
, sina =

Im lts

u1 + ltsu
. s76d

The final result is

jstd = j0 + cmeRe lt cossIm lt + a0d, s77d

Ustd = U0 − creRe lt cossIm lt + a + a0d, s78d

where amplitudec and absolute phasea0 reflect the arbitrary
factor C1 in Eq. s72d and are adjustable while all other pa-
rameters are fixed.

B. Comparison with solutions of the full PDE’s

As a check of accuracy, these solutions are now first com-
pared with numerical solutions of the full PDE problem.

For the set of parameters from Figs. 2–4, the stationary
solution iss j0,U0d=s1.49310−5,13.583d, and the eigenvalue
l has the complex valuel=−2.913310−6± i4.822310−5.
As ts=340/m andRs=1400/m, the ratio of current and volt-
age amplituder =295/m and the phase shifta=98.69° are
determined through Eq.s76d.

The comparison of these predictions from the stability
analysis with numerical solutions of the full PDE problem is
shown in Fig. 8. Here the free parameters for the total am-
plitudec and the absolute phasea0 were chosen such as to fit
the PDE data well.

This visual agreement can be tested in more detail. In
particular, we used the PDE data in the time interval 5
3105,t,6.53105 to determine the phase shifta between
U1 and j1. It is a=s100±0.4d°, convincingly close to the
predicted value ofa=98.69°.

Increasing the total applied voltageUt, the real part of the
eigenvaluel grows until it becomes positive. This means
that the stationary solution becomes linearly unstable and
perturbations will grow. An example of such behavior occurs
for Ut=24 with all other parameters as before. The stationary
solution is thens j0,U0d=s2.64310−5,13.441d, the eigen-
value isl=2.493310−6± i7.375310−5, the ratio of current
and voltage amplitude isr =192/m, and the phase shift isa
=99.83°.

Figure 9 shows again the comparison between these re-
sults and the numerical solutions of the full PDE’s. Again,
the agreement is very convincing.

Of course, the predictive power of linear stability analysis
is limited to small perturbations withj1! j0 and U1!U0.
When the amplitude of the oscillation from Fig. 6 increases
further, nonlinear couplings set in and the system finally
reaches a limit cycle as shown in Fig. 7.

C. Calculation of phase diagrams

The stability analysis now allows one to derive the bifur-
cation line where a homogeneous stationary state loses its
stability. Figure 10 shows this bifurcation line for the param-
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eterss28d as a function of applied voltageUt and conductiv-
ity 1/Rs for three different values ofg. Besides the value
g=0.08 used everywhere else in the paper, also results for
g=0.04 and 0.16 are shown to illustrate the sensitivity of
theoretical predictions to this parameter. For Rel,0, the
stationary state is linearly stable, while for Rel.0, the sys-
tem is always in the oscillating state.

Comparison with the experimental phase diagram in Fig.
11 for the gas gap with a corresponding width ofd=1 mm
f11,40g shows qualitative and quantitative correspondences,
but also deviations. Experiments in the 1 mm gap forUt
,585 V sUt=20.5d do not exhibit oscillations. The same
holds theoretically for a secondary emission coefficient of

0.08 or smaller. In detail, experiments show that the raising
phase transition line initially raises with positive slope then
changes gradually to being almost parallel to thess axis and
then continues with negative slope up to the maximal experi-
mentally reachedss.

For the low conductivity of the semiconductor layer, the
experiment shows another bifurcation line almost parallel to
the Ut axis at values ofss around 0.5310−7/ sV cmd. In
dimensionless units this corresponds to a plateau at values of
1/Rs around 0.5310−6. An approach to such a plateau can
also be seen in the calculated phase diagram. However, the
theoretical curve crosses over continuously to this plateau,
while the experimental curve seems to show the intersection
of two bifurcation lines with a quite distinct slope. We have
no explanation for this deviation.

It is remarkable that the bifurcation theory also covers the
almost horizontal bifurcation line for small 1 /Rs. Another
explanation for this experimentally observed feature of the
phase diagram would have been a breakdown of the con-
tinuum approximation: the recovery phase of the oscillation
would have carried such a low current that the discreteness
of the electrons would have to be taken into account.

Finally, it was observed experimentallyf10,11g that in-
creasing the system sizeL while keeping other conditions
unchanged, the frequency decreases and oscillations set in at
higher voltages. This agrees with our calculated phase dia-
gram in Fig. 12. Indeed, forUt,22.5, the homogeneous sta-
tionary state is stable forL=72.

VI. CONCLUSION

We have analyzed the simplest model for a one-
dimensional short gas discharge coupled to an external cir-
cuit with resistor, capacitance, and stationary voltage. This
analysis is directly applicable to experiments performed in
f10,11g.

We have presented fully numerical solutions as well as a
linear stability analysis of the stationary state of the system
which are in very good mutual agreement. The numerical
solutions reproduce experimental observations of bistability

FIG. 10. Bifurcation diagram for the parameters from Eq.s28d
swhereL=36d and three different values ofg. The lines separate
regions with Rel,0 where the stationary state is linearly stable
from regions with Rel.0 where the homogeneous stationary state
loses its stability.

FIG. 11. Blowup of the bifurcation diagram in Fig. 10 for two
different values of g and comparison with experimental data
f11,40g. Theoretical lines and experimental lines are in the same
region of parameters and have the same limits.

FIG. 12. Bifurcation diagram forg=0.08,L=36, andL=72.

OSCILLATIONS IN dc DRIVEN BARRIER… PHYSICAL REVIEW E 71, 066402s2005d

066402-11



and oscillations in a semiquantitative manner, though the
model is minimal and no attempt of parameter fitting has
been made. The stability analysis allows us to derive bifur-
cation diagrams in a simple manner; they also agree overall
with experimentally obtained bifurcation diagrams.

It should be remarked that we have constrained the analy-
sis to the gap of 1 mm wide; the gap of 0.5 mm is so sensi-
tive to the actual value of secondary emissiong that quanti-
tative analysis based on a fixed value ofg seemed doubtful.

We have reproduced a number of experimental observa-
tions up to the dependence of oscillation amplitude on ap-
plied potential and of the oscillation frequency on the con-
ductivity of the semiconductor layer, while discrepancies of
other observables will stay a subject of investigation. This

opens up the way to investigate now the spatial and spa-
tiotemporal patterns in the next step.
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